講座信息:Co-Clustering of Nonsmooth Graphons 2016-07-04 題目:Co-Clustering of Nonsmooth Graphons主講:David Choi教授美國(guó)卡內(nèi)基梅隆大學(xué)公眾政策與信息管理系時(shí)間:7月7號(hào)(周四)上午9:00開始地點(diǎn):bwin必贏唯一官網(wǎng)314教室 Abstract: Theoretical results are becoming known for community detection and clustering of networks; however, these results assume an idealized generative model that is unlikely to hold in many settings. Here we consider exploratory co-clustering of a bipartite graph, where the rows and columns of the adjacency matrix are assumed to be samples from an arbitrary population. This is equivalent to assuming that the data is generated from a nonparametric model known as a graphon. We show that co-clusters found by any method can be extended to the row and column populations, or equivalently that the estimated blockmodel approximates a blocked version of the generative graphon, with generalization error bounded by n^{-1/2}. Analogous results are also shown for degree-corrected co-blockmodels and random dot product bipartite graphs, with error rates depending on the dimensionality of the latent variable space. 個(gè)人簡(jiǎn)歷: David Choi教授于2004年畢業(yè)于斯坦福大學(xué)電子信息工程系獲得博士學(xué)位。后在美國(guó)麻省理工學(xué)院Lincoln實(shí)驗(yàn)室做研究員。2009-2011在哈佛大學(xué)工業(yè)工程系做博士后研究。2011-2012年在加州大學(xué)伯克利分校統(tǒng)計(jì)系做兼職教授。2012年進(jìn)入卡內(nèi)基梅隆大學(xué)公共政策與信息管理系任教。